填空题已知函数f(x)=|xex|,方程f2(x)+tf(x)+1=0(t∈R)有四个

发布时间:2020-07-09 02:54:23

填空题已知函数f(x)=|xex|,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,则t的取值范围________.

网友回答

解析分析:函数f(x)=|xex|是分段函数,通过求导分析得到函数f(x)在(0,+∞)上为增函数,在(-∞,-1)上为增函数,在(-1,0)上为减函数,求得函数f(x)在(-∞,0)上,当x=-1时有一个最大值,所以,要使方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,f(x)的值一个要在内,一个在内,然后运用二次函数的图象及二次方程根的关系列式求解t的取值范围.解答:f(x)=|xex|=当x≥0时,f′(x)=ex+xex≥0恒成立,所以f(x)在[0,+∞)上为增函数;当x<0时,f′(x)=-ex-xex=-ex(x+1),由f′(x)=0,得x=-1,当x∈(-∞,-1)时,f′(x)=-ex(x+1)>0,f(x)为增函数,当x∈(-1,0)时,f′(x)=-ex(x+1)<0,f(x)为减函数,所以函数f(x)=|xex|在(-∞,0)上有一个最大值为f(-1)=-(-1)e-1=,要使方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,令f(x)=m,则方程m2+tm+1=0应有两个不等根,且一个根在内,一个根在内,再令g(m)=m2+tm+1,因为g(0)=1>0,则只需g()<0,即,解得:t<-.所以,使得函数f(x)=|xex|,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根的t的取值范围是.故
以上问题属网友观点,不代表本站立场,仅供参考!