已知,求函数y=(log2x+1)(log2x-2)的最大值和最小值并求出取得最值时对应的x值.
网友回答
解:由已知,可得 ,故 x2-2x≤x-2,解得 1≤x≤2.
令t=log2x,则0≤t≤1,函数y=(log2x+1)(log2x-2)=(t+1)(t-2),
故当 t=时,即x=时,函数y取得最小值为-,
当t=0或1时,即x=1或2时,函数y取得最大值为-2.
解析分析:解指数不等式求得 1≤x≤2,令t=log2x,则0≤t≤1,函数y=(t+1)(t-2),利用二次函数的性质求得函数y的最大值和最小值并求出取得最值时对应的x值.
点评:本题主要考查指数不等式、一元二次不等式的解法,二次函数的性质的应用,属于中档题.