已知圆心(a,b)(a<0,b<0)在直线y=2x+1上的圆,若其圆心到x轴的距离恰好等于圆的半径,在y轴上截得的弦长为,则圆的方程为A.(x+2)2+(y+3)2=

发布时间:2020-07-31 19:50:53

已知圆心(a,b)(a<0,b<0)在直线y=2x+1上的圆,若其圆心到x轴的距离恰好等于圆的半径,在y轴上截得的弦长为,则圆的方程为A.(x+2)2+(y+3)2=9B.(x+3)2+(y+5)2=25C.D.

网友回答

A
解析分析:根据题意画出图形,过M作MA垂直于x轴,MB垂直于y轴,连接MC,由垂径定理得到B为CD中点,由|CD|求出|BC|,由圆与x轴垂直得到圆与x轴相切,所以MA和MC为圆M的半径,在直角三角形MBC中,由|MB|=|a|,|MC|=|MA|=|b|及|BC|,利用勾股定理列出关于a与b的方程,再把M的坐标代入到直线y=2x+1中,又得到关于a与b的另一个方程,联立两方程即可求出a与b的值,从而确定出圆心M的坐标,及圆的半径,根据圆心坐标和半径写出圆的方程即可.

解答:解:根据题意画出图形,如图所示:过M作MA⊥x轴,MB⊥y轴,连接MC,由垂径定理得到B为CD中点,又|CD|=2,∴|CB|=,由题意可知圆的半径|MA|=|MC|=|b|,|MB|=|a|,在直角三角形BC中,根据勾股定理得:b2=a2+()2,①又把圆心(a,b)代入y=2x+1中,得b=2a+1,②联立①②,解得:a=-2,b=-3,所以圆心坐标为(-2,-3),半径r=|-3|=3,则所求圆的方程为:(x+2)2+(y+3)2=9.故选A

点评:此题考查了直线与圆的位置关系,垂径定理及勾股定理.根据圆心到x轴的距离恰好等于圆的半径得到所求的圆与x轴相切,进而求出圆的半径为|b|是解本题的关键,同时运用了数形结合的思想解决数学问题,培养了学生发现问题,分析问题,解决问题的能力.
以上问题属网友观点,不代表本站立场,仅供参考!