设数列{an}的前n项和为Sn,且满足S1=2,Sn+1=3Sn+2(n=1,2,3…).
(Ⅰ)求证:数列{Sn+1}为等比数列;
(Ⅱ)求通项公式an;
(Ⅲ)设bn=,求证:b1+b2+…+bn<1.
网友回答
解:(Ⅰ)∵Sn+1=3Sn+2,
∴Sn+1+1=3(Sn+1)
∵S1+1=2+1=3
∴{Sn+1}是首项为3公比为3的等比数列.
(Ⅱ)∵{Sn+1}是首项为3公比为3的等比数列.
∴Sn+1=3×3n-1=3n,
∴Sn=3n-1,
Sn-1=3n-1-1,
∴an=Sn-Sn-1=3n-3n-1=.
(Ⅲ)证明:∵Sn=3n-1,,
∴bn===
=,
设,
b1+b2+…+bn<c1+c2+c3+…+cn
=
<(1+++…+)
=
=<1.
∴b1+b2+…+bn<1.
解析分析:(Ⅰ)由Sn+1=3Sn+2,知Sn+1+1=3(Sn+1),由此能够证明{Sn+1}是等比数列.(Ⅱ)由Sn=3n-1,得到Sn-1=3n-1-1,由此能求出an=Sn-Sn-1=3n-3n-1=.(Ⅲ)bn==,由此入手,能够证明b1+b2+…+bn<1.
点评:本题考查数列与不等式的综合,综合题强,难度大,计算繁琐,易出错.解题时要认真审题,仔细解答,注意放缩法的合理运用.