已知在直角坐标系中,,其中数列{an},{bn}都是递增数列.(1)若an=2n+1,bn=3n+1,判断直线A1B1与A2B2是否平行;(2)若数列{an},{bn

发布时间:2020-08-01 06:07:41

已知在直角坐标系中,,其中数列{an},{bn}都是递增数列.
(1)若an=2n+1,bn=3n+1,判断直线A1B1与A2B2是否平行;
(2)若数列{an},{bn}都是正项等差数列,设四边形AnBnBn+1An+1的面积为Sn(n∈N*),求证:{Sn}也是等差数列;
(3)若≥-12,记直线AnBn的斜率为kn,数列{kn}的前8项依次递减,求满足条件的数列{bn}的个数.

网友回答

(1)解:由题意A1(3,0),B1(0,4),A2(5,0),B2(0,7),
所以,

因为,所以A1B1与A2B2不平行.
(2)证明:因为{an},{bn}为等差数列,设它们的公差分别为d1和d2,
则an=a1+(n-1)d1,bn=b1+(n-1)d2,an+1=a1+nd1,bn+1=b1+nd2
由题意
所以[b1+(n-1)d2]}
=,
所以,
所以Sn+1-Sn=d1d2是与n无关的常数,
所以数列{Sn}是等差数列
(3)解:因为An(an,0),Bn(0,bn),
所以=
又数列{kn}前8项依次递减,
所以=<0,
对1≤n≤7(n∈Z)成立,
即an-a+b<0对1≤n≤7(n∈Z)成立.
又数列{bn}是递增数列,所以a>0,故只要n=7时,7a-a+b=6a+b<0即可.
又b1=a+b≥-12,联立不等式作出可行域(如右图所示),易得a=1或2,
当a=1时,-13≤b<-6即b=-13,-12,-11,-10,-9,-8,-7,有7个解;
当a=2时,-14≤b<-12,即b=-14,-13,有2个解,所以数列{bn}共有9个.

解析分析:(1)确定A1(3,0),B1(0,4),A2(5,0),B2(0,7),求得斜率,可得A1B1与A2B2不平行;(2)因为{an},{bn}为等差数列,设它们的公差分别为d1和d2,则an=a1+(n-1)d1,bn=b1+(n-1)d2,an+1=a1+nd1,bn+1=b1+nd2,从而可得,进而可证明数列{Sn}是等差数列;(3)求得=,根据数列{kn}前8项依次递减,可得an-a+b<0对1≤n≤7(n∈Z)成立,根据数列{bn}是递增数列,故只要n=7时,7a-a+b=6a+b<0即可,关键b1=a+b≥-12,联立不等式作出可行域,即可得到结论.

点评:本题考查数列与解析几何的综合,考查等差数列的定义,考查线性规划知识,综合性强.
以上问题属网友观点,不代表本站立场,仅供参考!