解答题选修4-1:几何证明选讲
如图:⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F.
(1)判断BE是否平分∠ABC,并说明理由
(2)若AE=6,BE=8,求EF的长.
网友回答
解:(1)BE平分∠ABC;
证明:∵AC=CD,∴∠CAD=∠ADC
∴∠ACB=∠CAD+∠ADC=2∠CAD…(2分)
又∵AB=AC∴∠ABC=∠ACB=2∠CAD∵∠CAD=∠EBC,
∴∠ABC=2∠EBC∴BE平分∠ABC;…(5分)
(2)连接EC,由(1)BE平分∠ABC∴E是弧AC的中点
∴AE=EC=6
又∠EBC=∠CAD=∠ADC∴ED=BD=8…(7分)
∵A、B、C、E四点共圆∴∠CED=∠ABC=∠ACB=∠AEF
∴△AEF∽△DEC
∴∴…(10分)解析分析:(1)BE平分∠ABC.由已知中边的相等,可得∠CAD=∠D,∠ABC=∠ACB,再利用同弧所对的圆周角相等,可得∠CAD=∠D=∠DBE,即有∠ABE+∠EBD=∠CAD+∠D,利用等量减等量差相等,可得∠EBD=∠D=∠ABE,故得证.(2)由(1)中的所证条件∠ABE=∠FAE,再加上两个三角形的公共角,可证△BEA∽△AEF,利用比例线段可求EF.点评:本题考查了圆周角定理,以及等腰三角形的性质,等边对等角,角平分线的判定,还有相似三角形的判定和性质等知识.本题解题的关键是正确读图,做题时最好自己作图以帮助理解题意.