已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域.
网友回答
解:任取x1<x2,x2-x1>0,
∵当x>0时,f(x)>0,
∴f(x2-x1)>0
∵f(x2)=f(x2-x1+x1)=f(x2-x1)+f(x1)
∴f(x2)-f(x1)=f(x2-x1)>0,
即∴f(x2)>f(x1)
∴f(x)为增函数.
在条件中,令y=-x,则f(0)=f(x)+f(-x),
再令x=y=0,则f(0)=2?f(0),
∴f(0)=0,故f(-x)=-f(x),f(x)为奇函数,
∴f(1)=-f(-1)=2,又f(-2)=2f(-1)=-4,
∴f(x)的值域为[-4,2].
解析分析:依据函数单调性的定义判断函数的单调性,充分利用条件当x>0时,有f(x)>0与f(x+y)=f(x)+f(y),即可判定单调性,再判断f(x)奇偶性,即找出f(-x)与f(x)之间的关系,令y=-x,有f(0)=f(x)+f(-x),故问题转化为求f(0)即可,可对x、y都赋值为0;最后求f(x)在区间[-2,1]上的值域即可.
点评:本题考点是抽象函数及其性质,在研究其奇偶性时本题采取了连续赋值的技巧,这是判断抽象函数性质时常用的一种探究的方式,属于中档题.