如图,第一个图是正三角形,将此正三角形的每条边三等分,以中间一段为边向外作正三角形,并擦去中间一段,得第2个图,将第2个图中的每一条边三等分,以中间一段为边向外作正三角形,并擦去中间一段,得第3个图,如此重复操作至第n个图,用an表示第n个图形的边数,则数列an的前n项和Sn等于________.
网友回答
4n-1
解析分析:根据图形得到,a1=3,a2=12,a3=48,由题意知:每一条边经一次变化后总变成四条边,即,由等比数列的定义知:an=3×4n-1,于是根据等比数列前n项和公式即可求解
解答:∵a1=3,a2=12,a3=48由题意知:每一条边经一次变化后总变成四条边,即,由等比数列的定义知:an=3×4n-1∴Sn==4n-1故