在离心率为的双曲线中,F为右焦点,过F点倾斜角为60°的直线与双曲线右支相较于A、B两点且点A在第一象限,若,则m=A.5B.4C.3D.2

发布时间:2020-08-01 03:02:01

在离心率为的双曲线中,F为右焦点,过F点倾斜角为60°的直线与双曲线右支相较于A、B两点且点A在第一象限,若,则m=A.5B.4C.3D.2

网友回答

B
解析分析:分别过A,B作AD⊥l,BC⊥l,垂足分别为D,C(l为双曲线的右准线),过B作BE⊥AD,垂足为E,由直线AB的倾斜角为60°,则∠ABE=30°,设BF=t,则可得AF=mt,=,再由双曲线的定义可知AE=AD-BC==,从而可求m

解答:分别过A,B作AD⊥l,BC⊥l,垂足分别为D,C(l为双曲线的右准线),过B作BE⊥AD,垂足为E∵直线AB的倾斜角为60°,则∠ABE=30°设BF=t,则由,可得AF=mt,AB=AF+BF=(m+1)tRt△ABE中,=由双曲线的定义可知,,∵AE=AD-DE=AD-BC===∴m=4故选:B

点评:本题与直线的倾斜角的性质相结合考查双曲线的第二定义的应用及直线与双曲线的相交关系的应用,解答本题的关键是灵活应用第二定义
以上问题属网友观点,不代表本站立场,仅供参考!