解答题如图所示,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1

发布时间:2020-07-09 07:22:41

解答题如图所示,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC
(1)求异面直线BE、AB1所成的角的大小;
(2)求A1到截面BDE的距离;
(3)求二面角A1-DE-B的大小.

网友回答

解:以DA,DC,DD1分别为x轴,y轴,z轴,建立空间直角坐标系D-xyz.
则D(0,0,0),B(2,2,0),C(0,2,0),E(0,2,1),A1(2,0,4),A(2,0,0),B1(2,2,4),,
(1)
设异面直线BE、AB1所成的角的大小为α,则cos,

(2)证明:∵,,
∴A1C⊥BD,A1C⊥DE
又DB∩DE=D,∴A1C⊥平面DBE
设C到截面BDE的距离为h,则有
∵VC-BDE=VE-BCD,∴

∴A1到截面BDE的距离为;
(3)由(2)知向量 为平面DBE的一个法向量
设平面DA1E的法向量n=(x,y,z)
由 ,得2y+z=0,2x+4z=0
令z=-2,得x=4,y=1,
∴n=(4,1,-2)
又二面角A1-DE-B为锐角
∴二面角A1-DE-B的余弦值为 解析分析:以DA,DC,DD1分别为x轴,y轴,z轴,建立空间直角坐标系D-xyz.(1)先求得,利用向量的夹角求异面直线BE、AB1所成的角.(2)根据空间直角坐标系个点坐标,即向量垂直计算,可得A1C⊥BD,A1C⊥DE又DB∩DE=D即可得A1C⊥平面DBE,再利用等体积可求.(3)由(2)知向量 为平面DBE的一个法向量,根据向量坐标计算,即可得到二面角A1-DE-B的余弦值.点评:本题以正四棱柱为载体,考查线线角,面面角,考查利用空间向量解决立体几何问题,计算要小心.
以上问题属网友观点,不代表本站立场,仅供参考!