已知,且正整数n满足Cn3=Cn5,A={0,1,2,…n}
(1)求n;
(2)若i、j∈A,是否存在j,当i≥j时,Cni≤Cnj恒成立.若存在,求出最小的j;若不存在,试说明理由.
(3)k∈A,若f(x)的展开式有且只有三个有理项,求k.
网友回答
解:(1)根据题意中Cn3=Cn5,结合Cnm=Cnn-m,
则n=8
(2)由(1)的结论,n=8,
当n=8时,C8m(m=0、1、2…、8)中,C84最大,
即i≥j≥4时,满足Cni≤Cnj恒成立,
则最小的j=4;
(3)展开式通项为=
依题意,只须8-r是k的整数倍的r有且只有三个,
分别令k=1,2,3…8,代入通项中,
检验得k=3或4;
故k=3或4.
解析分析:(1)根据题意,结合二项式系数的性质Cnm=Cnn-m,易得