已知函数,x∈[1,+∞),(1)若,求f(x)的最小值;(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.

发布时间:2020-07-31 21:39:25

已知函数,x∈[1,+∞),
(1)若,求f(x)的最小值;
(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.

网友回答

解:(1)因为,f(x)在[1,+∞)上为增函数,
所以f(x)在[1,+∞)上的最小值为f(1)=.…
(2)问题等价于f(x)=x2+2x+a>0,在[1,+∞)上恒成立.
即a>-(x+1)2+1在[1,+∞)上恒成立.
?令g(x)=-(x+1)2+1,则g(x)在[1,+∞)上递减,当x=1时,g(x)max=-3,所以a>-3,
即实数a的取值范围是(-3,+∞).…
解析分析:(1)a=时,函数为,f在[1,+∞)上为增函数,故可求得函数f(x)的最小值
(2)问题等价于f(x)=x2+2x+a>0,在[1,+∞)上恒成立,利用分类参数法,通过求函数的最值,从而可确定a的取值范围

点评:本题以函数为载体,考查对勾函数门课程二次函数的最值,考查恒成立问题的处理,注意解题策略.
以上问题属网友观点,不代表本站立场,仅供参考!