已知A(4,2),在焦点F的抛物线y2=4x上求一点M,使|MA|+|MF|为最小,并加以证明.

发布时间:2020-07-31 18:36:00

已知A(4,2),在焦点F的抛物线y2=4x上求一点M,使|MA|+|MF|为最小,并加以证明.

网友回答

证明:设P是抛物线上任意一点,L是抛物线的准线,过P作PP1 ⊥L,垂足为P1,过A作AA1⊥L,垂足为A1,且交抛物线于点M,
∴|PA|+|PF|=|PA|+|PP1|≥|AA1|=|MA|+|MA1|=|MF|+|MA|,
即M点为所求.
把y=2代入y2=4x中,解得x=1,故M(1,2).
解析分析:根据抛物线方程及A点坐标可以推知A点在抛物线内,把抛物线上的点到焦点的距离转化为到抛物线的准线的距离,结合图象,易得过点A且与准线L垂直的直线与抛物线的交点即为所求.

点评:本题主要考查了抛物线的定义,充分利用了抛物线上的点到准线的距离与点到焦点的距离相等这一特性,运用了转化思想和数形结合思想.
以上问题属网友观点,不代表本站立场,仅供参考!