设数列{xn}满足logaxn+1=1+logaxn(a>0,a≠1),若x1+x2+…+x100=100,则x101+x102+…+x200=________.
网友回答
100a100
解析分析:先根据递推公式和对数的运算性质,证明出数列是一个等比数列,再由等比数列的性质和数列前100项的和求出式子的值.
解答:∵logaxn+1=1+logaxn,∴logaxn+1-logaxn=1,∴=1,则=a,∴数列{xn}是以a为公比的等比数列,∵x1+x2+…+x100=100,∴x101+x102+…+x200=a100x1+a100x2+…a100x100=a100(x1+x2+…+x100)=100a100,故