已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(I)如果函数g(x)的单调递减区间为,求函数g(x)的解析式;
(II)在(Ⅰ)的条件下,求函数y=g(x)的图象在点P(-1,1)处的切线方程;
(III)若不等式2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
网友回答
解:(I)g′(x)=3x2+2ax-1由题意3x2+2ax-1<0的解集是
即3x2+2ax-1=0的两根分别是.
将x=1或代入方程3x2+2ax-1=0得a=-1.
∴g(x)=x3-x2-x+2.(4分)
(II)由(Ⅰ)知:g′(x)=3x2-2x-1,∴g′(-1)=4,
∴点p(-1,1)处的切线斜率k=g′(-1)=4,
∴函数y=g(x)的图象在点p(-1,1)处的切线方程为:
y-1=4(x+1),即4x-y+5=0.(8分)
(III)∵2f(x)≤g′(x)+2
即:2xlnx≤3x2+2ax+1对x∈(0,+∞)上恒成立
可得对x∈(0,+∞)上恒成立
设,则
令h′(x)=0,得(舍)
当0<x<1时,h′(x)>0;当x>1时,h′(x)<0
∴当x=1时,h(x)取得最大值-2
∴a≥-2.
∴a的取值范围是[-2,+∞).(13分)
解析分析:(I)求出g(x)的导函数,令导函数小于0得到不等式的解集,得到相应方程的两个根,将根代入,求出a的值.(II)求出g(x)的导数在x=-1的值即曲线的切线斜率,利用点斜式求出切线的方程.(III)求出不等式,分离出参数A,构造函数h(x),利用导数求出h(x)的最大值,令a大于等于最大值,求出a的范围.
点评:解决不等式恒成立问题,常用的方法是分离出参数,构造新函数,求出新函数的最值,得到参数的范围.