已知关于x的函数f(x)=x2+2ax+b(其中a,b∈R)(Ⅰ)求函数|f(x)|的单调区间;(Ⅱ)令t=a2-b.若存在实数m,使得同时成立,求t的最大值.

发布时间:2020-07-31 18:02:11

已知关于x的函数f(x)=x2+2ax+b(其中a,b∈R)
(Ⅰ)求函数|f(x)|的单调区间;
(Ⅱ)令t=a2-b.若存在实数m,使得同时成立,求t的最大值.

网友回答

解:(Ⅰ)∵f(x)=x2+2ax+b=(x+a)2-(a2-b)
∴①当a2-b≤0时,单调区间为:(-∞,-a]上为减,[-a,+∞)上为增;(2分)
②当a2-b>0时,单调区间为:减,
增,减,增(5分)
(Ⅱ)因为:若存在实数m,使得同时成立,即为两变量对应的函数值都小于等于的两变量之间间隔不超过1,故须对a2-b和,的大小分情况讨论
①当时,由方程,解得,
此时,不满足.(8分)
②当时,由方程,解得
此时,满足题意.(11分)
③当时,由方程,方程和解得,
此时由于,
所以只要即可,此时,综上所述t的最大值为.(16分)

解析分析:(Ⅰ)f(x)=(x+a)2-a2+b开口向上,但a2-b的正负不定,所以在取绝对值时要分类讨论.在每一种情况下分别求|f(x)|的单调区间.(Ⅱ)存在实数m,使得同时成立,即为两变量对应的函数值都小于等于的两变量之间间隔不超过1,故须对a2-b和,的大小分情况讨论,求出a2-b的取值范围,进而求得t的最大值.

点评:本题考查了数学上的分类讨论思想.分类讨论目的是,分解问题难度,化整为零,各个击破.
以上问题属网友观点,不代表本站立场,仅供参考!