设函数f(x)=kx3+3(k-1)x2-k2+1在区间(0,4)上是减函数,则k的取值范围A.B.C.D.

发布时间:2020-07-31 17:04:37

设函数f(x)=kx3+3(k-1)x2-k2+1在区间(0,4)上是减函数,则k的取值范围A.B.C.D.

网友回答

D

解析分析:先求导函数f'(x),函数f(x)=kx3+3(k-1)x2-k2+1在区间(0,4)上是减函数转化成f'(x)≤0在区间(0,4)上恒成立,讨论k的符号,从而求出所求.

解答:f'(x)=3kx2+6(k-1)x,∵函数f(x)=kx3+3(k-1)x2-k2+1在区间(0,4)上是减函数,∴f'(x)=3kx2+6(k-1)x≤0在区间(0,4)上恒成立当k=0时,成立k>0时,f'(4)=12k+6(k-1)×4≤0,即0<k≤k<0时,f'(4)=12k+6(k-1)×4≤0,f'(0)≤0,k<0故k的取值范围是k≤故选D.

点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题的综合能力,属于基础题.
以上问题属网友观点,不代表本站立场,仅供参考!