抛掷一枚骰子,当它每次落地时,向上的点数称为该次抛掷的点数,可随机出现1到6点中的任一个结果,连续抛掷三次,将第一次,第二次,第三次抛掷的点数分别记为a,b,c,求长

发布时间:2020-07-31 22:24:49

抛掷一枚骰子,当它每次落地时,向上的点数称为该次抛掷的点数,可随机出现1到6点中的任一个结果,连续抛掷三次,将第一次,第二次,第三次抛掷的点数分别记为a,b,c,求长度为a,b,c的三条线段能构成等腰三角形的概率为A.B.C.D.

网友回答

B
解析分析:先求出总的基本事件数,再求出可构成等腰三角形的基本事件数,代入古典概型概率公式,可得三条线段能构成等腰三角形的概率

解答:连续抛掷三次,点数分别为a,b,c的基本事件总数为6×6×6=216长度为a,b,c的三条线段能构成等腰三角形有下列几种情形①当a=b=c时,能构成等边三角形,有1,1,1;2,2,2;…;6,6,6共6种可能.②当a,b,c恰有两个相等时,设三边长为x,y,z,其中x∈{2,3,4,5,6}且x=z,且x≠y;若x=2,则y只能是1或3,共有2种可能;若x=3,则y只以是1,2,4,5,共有4种可能;若x=4,5,6,则y只以是集合{1,2,3,4,5,6}中除x外的任一个数,共有3×5=15种可能;∴当a,b,c恰有两个相等时,符合要求的a,b,c共有3×(2+4+3×5)=63故所求概率为P==故选B

点评:本题考查列举法计算基本事件数及事件发生的概率,列举时要注意不重不漏,分类列举.
以上问题属网友观点,不代表本站立场,仅供参考!