解答题已知数列{an}满足an+1=2an+n+1(n=1,2,3,…).
(1)若{an}是等差数列,求其首项a1和公差d;
(2)证明{an}不可能是等比数列;
(3)若a1=-1,是否存在实数k和b使得数列{?an+kn+b}是等比数列,如存在,求出{an}的前n项和,若不存在,说明理由.
网友回答
(1)解:∵an+1=2an+n+1,∴a2=2a1+2,a3=2a2+3=4a1+7,
∵{an}是等差数列,∴2a2=a1+a3,∴2(2a1+2)=a1+(4a1+7),∴a1=-3,a2=-4
∴d=a2-a1=-1;
(2)证明:假设{an}是等比数列,则
∴(2a1+2)2=a1(4a1+7),∴a1=-4,a2=-6,a3=-9,
∵a4=2a3+4=-14,∴与等比数列矛盾
∴假设不成立
∴{an}不可能是等比数列;
(3)解:假设存在,则有==常数
∴,∴
∴{an+n+2}是等比数列,首项为2,公比为2
∴an+n+2=2n,
∴an=2n-n-2
∴{an}的前n项和为=解析分析:(1)利用数列递推式,及{an}是等差数列,可求其首项a1和公差d;(2)利用反证法,即可证得;(3)假设存在,利用数列{an+kn+b}是等比数列,建立等式,即可求得{an}的前n项和点评:本题考查数列递推式,考查反证法的运用,考查数列的求和,考查学生的计算能力,属于中档题.