解答题已知函数有如下性质:如果常数a>0,那么该函数在上是减函数,在上是增函数.(1)

发布时间:2020-07-09 04:08:33

解答题已知函数有如下性质:如果常数a>0,那么该函数在上是减函数,在上是增函数.
(1)如果函数在(0,4]上是减函数,在[4,+∞)上是增函数,求b的值.
(2)设常数c∈[1,4],求函数的最大值和最小值;
(3)当n是正整数时,研究函数的单调性,并说明理由.

网友回答

解:(1)由已知得=4,
∴b=4.
(2)∵c∈[1,4],
∴∈[1,2],
于是,当x=时,函数f(x)=x+取得最小值2.
f(1)-f(2)=,
当1≤c≤2时,函数f(x)的最大值是f(2)=2+;
当2≤c≤4时,函数f(x)的最大值是f(1)=1+c.
(3)设0<x1<x2,g(x2)-g(x1)
=.
当<x1<x2时,g(x2)>g(x1),函数g(x)在[,+∞)上是增函数;
当0<x1<x2<时,g(x2)>g(x1),函数g(x)在(0,]上是减函数.
当n是奇数时,g(x)是奇函数,
函数g(x)在(-∞,-]上是增函数,在[-,0)上是减函数.
当n是偶数时,g(x)是偶函数,
函数g(x)在(-∞,-)上是减函数,在[-,0]上是增函数.解析分析:(1)根据题设条件知=4,由此可知b=4.(2)由∈[1,2],知当x=时,函数f(x)=x+取得最小值2.再由c的取值判断函数的最大值和最小值.(3)设0<x1<x2,g(x2)-g(x1)=.由此入手进行单调性的讨论.点评:本题考查函数的性质和应用,解题要认真审题,仔细求解.
以上问题属网友观点,不代表本站立场,仅供参考!