填空题公差不等于0的等差数列{an}中,a2,a3,a5构成等比数列,S7=42,则an=________.
网友回答
2n-2解析分析:由条件可得a2 ?a5=a32,设公差等于d,则 d≠0,(a1+d) (a1+4d)=(a1+2d)2,解得 a1=0,由 S7 =7×0+=42,解得 d 的值,即得通项公式an.解答:公差不等于0的等差数列{an}中,a2,a3,a5构成等比数列,∴a2 ?a5=a32.设公差等于d,则 d≠0,(a1+d) (a1+4d)=(a1+2d)2,解得 a1=0.∵S7 =7×0+=42,∴d=2.∴an=0+(n-1)2=2n-2.故