已知Sn为数列{an}的前n项和,a1=a,an+1=Sn+3n,
(1)若bn=Sn-3n,求{bn}的通项公式;
(2)若an+1≥an恒成立,求a取值范围.
网友回答
解:(1)∵an+1=Sn+3n,∴Sn+1-Sn=Sn+3n,
∴Sn+1=2Sn+3n,∴Sn+1-3n+1=2(Sn-3n)
即bn+1=2bn,b1=S1-3=a-3,
∴bn=(a-3)?2n-1,
(2)由(1)可得,Sn-3n=(a-3)?2n-1.n≥2
an=2?3n-1+(a-3)?2n-2,an+1-an=2(3n-3n-1)+(a-3)(2n-1-2n-2)
=4?3n-1+(a-3)?2n-2≥0
当n≥2时,,∴a-3≥-12,a≥-9
而a2-a1=6+(a-3)-a=3>0,∴a≥-9时,an+1≥an恒成立.
解析分析:(1)由an+1=Sn+3n,可得Sn+1-Sn=Sn+3n,Sn+1=2Sn+3n,进而可得Sn+1-3n+1=2(Sn-3n),即bn+1=2bn,结合等比数列的通项公式可求(2)由(1)可得,Sn-3n=(a-3)?2n-1.n≥2,从而可求an=2?3n-1+(a-3)?2n-2,然后只要判断an+1-an≥0是否成立
点评:本题主要考查了数列的递推公式an=Sn-Sn-1求解数列的通项公式,构造特殊数列(等差、等比数列),数列的单调性的应用.