求经过两直线2x-y+4=0和x-y+5=0的交点并且满足下列条件的直线方程.(1)平行于直线2x+3y+7=0(2)与点P(2,-1)距离等于1的直线方程.

发布时间:2020-08-01 02:35:47

求经过两直线2x-y+4=0和x-y+5=0的交点并且满足下列条件的直线方程.
(1)平行于直线2x+3y+7=0
(2)与点P(2,-1)距离等于1的直线方程.

网友回答

解:(1)联立方程,解得,
故两直线2x-y+4=0和x-y+5=0的交点为(1,6),
设平行于直线2x+3y+7=0的直线为2x+3y+c=0,代入(1,6),
可得2+18+c=0,解得c=-20,
所以所求直线的方程为:2x+3y-20=0
(2)当所求直线无斜率时,方程为x=1,显然满足到点P的距离为1,
当直线斜率存在时,设方程为y-6=k(x-1),即kx-y-k+6=0,
故点P到该直线的距离为=1,解得k=,
故方程为24x+7y-66=0,
故符合题意的方程为:24x+7y-66=0或x=1
解析分析:(1)联立方程可得交点,设直线为2x+3y+c=0,代点可得c,进而可得
以上问题属网友观点,不代表本站立场,仅供参考!