解答题已知数列{an}中,前n项和为Sn,点(an+1,Sn+1)在直线y=4x-2,

发布时间:2020-07-09 04:52:06

解答题已知数列{an}中,前n项和为Sn,点(an+1,Sn+1)在直线y=4x-2,其中n=1,2,3…,
(Ⅰ)设bn=an+1-2an,且a1=1,求证数列{bn}是等比数列;
(Ⅱ)令f(x)=b1x+b2x2+…+bnxn,求函数f(x)在点x=1处的导数f′(1)并比较f′(1)与
6n2-3n的大小.

网友回答

解:(I)由已知点(an+1,Sn+1)在直线y=4x-2上.
∴Sn+1=4(an+1)-2.
即Sn+1=4an+2.(n=1,2,3,)
∴Sn+2=4an+1+2.
两式相减,得Sn+2-Sn+1=4an+1-4an.
即an+2=4an+1-4an.(3分)
an+2-2an+1=2(an+1-2an).
∵bn=an+1-2an,(n=1,2,3,)
∴bn+1=2bn.
由S2=a1+a2=4a1+2,a1=1.
解得a2=5,b1=a2-2a1=3.
∴数列{bn}是首项为3,公式为2的等比数列.(6分)
(II)由(I)知bn=3?2n-1,
∵f(x)=b1x+b2x2+…+bnxn,
∴f′(x)=b1+2b2x+…+nbnxn-1.
从而f′(1)=b1+2b2+…+nbn
=3+2?3?2+3?3?22+…+n?3?2n-1
=3(1+2?2+3?22+…+n?3?2n-1)(8分)
设Tn=1+2?2+3?22+…+n?2n-1,
2Tn=2+2?22+3?23+…+(n-1)?2n-1+n?2n.
两式相减,得-Tn=1+2+22+23+…+2n-1-n?2n
=.
∴Tn=(n-1)?2n+1.
∴f′(1)=3(n-1)?2n+3.(11分)
由于f′(1)-(6n2-3n)=3[(n-1)?2n+1-2n2+n]
=3(n-1)[2n-(2n+1)].
设g(n)=f′(1)-(6n2-3n).
当n=1时,g(1)=0,∴f′(1)=6n2-3n;
当n=2时,g(2)=-3<0,∴f′(1)<6n2-3n;
当n≥3时,n-1>0,又2n=(1+1)n=Cn0+Cn1+…+Cnn-1+Cnn≥2n+2>2n+1,
∴(n-1)[2n-(2n+1)]>0,即g(n)>0,从而f′(1)>6n2-3n.(14分)解析分析:(I)由点(an+1,Sn+1)在直线y=4x-2上,知Sn+1=4an+2.所以an+2=4an+1-4an.再由bn=an+1-2an,知bn+1=2bn.上此知数列{bn}是首项为3,公比为2的等比数列.(II)由bn=3?2n-1,f(x)=b1x+b2x2+…+bnxn,知f′(x)=b1+2b2x+…+nbnxn-1.从而f′(1)=b1+2b2+…+nbn=3(1+2?2+3?22+…+n?3?2n-1).Tn=1+2?2+3?22+…+n?2n-1,由错位相减法知Tn=(n-1)?2n+1.f′(1)=3(n-1)?2n+3.由f′(1)-(6n2-3n)=3[(n-1)?2n+1-2n2+n]能推导出f′(1)>6n2-3n.点评:本题考查数列的性质和应用,解题时要注意不等式的合理运用.
以上问题属网友观点,不代表本站立场,仅供参考!