解答题已知数列{an}的前n项和为Sn,点(n,Sn)在函数f(x)=3x2-2x的图象上,
(1)求数列{an}的通项公式;
(2)设,Tn是数列{bn}的前n项和,求使成立的最小正整数n的值.
网友回答
解:(1)∵点(n,Sn)在函数f(x)=3x2-2x的图象上
∴Sn=3n2-2n,
当n≥2时,an=sn-sn-1=6n-5
当n=1时,也符合上式
∴an=6n-5-----(4分)
(2),
∴Tn=(1-+-+…+)=(1-)
∴|Tn-|=<
∴n>
又∵n∈Z
∴n的最小值为9.解析分析:(1)首先根据条件得出Sn=3n2-2n,然后利用an=sn-sn-1求出通项公式.(2)由(1)得出数列{bn}的通项公式,然后利用裂项的方法表示出Tn,再解不等式即可.点评:本题考查了等差数列的通项公式以及数列求和,此题采取了裂项求和的方法,属于基础题.