解答题如图,三棱柱A1B1C1-ABC的三视图,主视图和侧视图是全等的矩形,俯视图是等

发布时间:2020-07-09 09:15:25

解答题如图,三棱柱A1B1C1-ABC的三视图,主视图和侧视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点.
(I)求证:B1C∥平面AC1M;
(II)求证:平面AC1M⊥平面AA1B1B.

网友回答

证明:(I)由三视图可知三棱柱A1B1C1-ABC为直三棱柱,底面是等腰直角三角形且∠ACB=90°,连接A1C,设A1C∩AC1=O.连接MO,由题意可知A1O=CO,A1M=B1M,所以MO∥B1C.
∵MO?平面AC1M,B1C?平面AC1M
∴B1C∥平面AC1M;
(II)∵A1C1=B1C1,点M是A1B1的中点
∴C1M⊥A1B1,
∵平面A1B1C1⊥平面AA1B1B,平面A1B1C1∩平面AA1B1B=A1B1,
∴C1M⊥平面AA1B1B
∵C1M?平面AC1M
∴平面AC1M⊥平面AA1B1B.解析分析:(I)由三视图确定直观图的形状,连接A1C,设A1C∩AC1=O,连接MO,证明MO∥B1C,利用线面平行的判定,可得B1C∥平面AC1M;(II)先证明C1M⊥平面AA1B1B,再证明平面AC1M⊥平面AA1B1B.点评:本题考查线面平行,考查面面垂直,解题的关键是掌握线面平行的判定,掌握面面垂直的证明方法.
以上问题属网友观点,不代表本站立场,仅供参考!