对于△ABC,有如下四个命题:①若sin2A=sin2B,则△ABC为等腰三角形,②若sinB=cosA,则△ABC是直角三角形③若sin2A+sin2B>sin2C

发布时间:2020-08-04 18:08:13

对于△ABC,有如下四个命题:
①若sin2A=sin2B,则△ABC为等腰三角形,
②若sinB=cosA,则△ABC是直角三角形
③若sin2A+sin2B>sin2C,则△ABC是钝角三角形
④若,则△ABC是等边三角形
其中正确的命题个数是A.1B.2C.3D.4

网友回答

A
解析分析:①若sin2A=sin2B,则 2A=2B,或 2A+2B=π,即A=B或C=,可知①不正确.②若sinA=cosB,找出∠A和∠B的反例,即可判断则△ABC是直角三角形的正误.③由sin2A+sin2B>sin2C,结合正弦定理可得a2+b2>c2,再由余弦定理可得cosC>0,所以C为锐角.④利用正弦定理,化简,可得sin=sin=sin,从而可得==.

解答:①若sin2A=sin2B,则 2A=2B,或 2A+2B=π,即A=B 或C=,故△ABC为等腰三角形或直角三角形,故①不正确.②若sinA=cosB,例如∠A=100°和∠B=10°,满足sinA=cosB,则△ABC不是直角三角形,故②不正确.③由sin2A+sin2B>sin2C,结合正弦定理可得a2+b2>c2,再由余弦定理可得cosC>0,∴C为锐角,故③不正确.④∵,∴sin=sin=sin,由于半角都是锐角,∴==,∴△ABC是等边三角形,故④正确故选A.

点评:本题是基础题,考查三角形的判断,三角方程的求法,反例法的应用,考查计算能力,逻辑推理能力.
以上问题属网友观点,不代表本站立场,仅供参考!