在四棱锥S-ABCD中,已知AB∥CD,SA=SB,SC=SD,E、F分别为AB、CD的中点.(1)求证:平面SEF⊥平面ABCD;(2)若平面SAB∩平面SCD=l

发布时间:2020-08-04 18:07:58

在四棱锥S-ABCD中,已知AB∥CD,SA=SB,SC=SD,E、F分别为AB、CD的中点.
(1)求证:平面SEF⊥平面ABCD;
(2)若平面SAB∩平面SCD=l,求证:AB∥l.

网友回答

解:(1)证明:由SA=SB,E为AB中点得SE⊥AB.由SC=SD,F为CD中点得SF⊥DC.又AB∥DC,∴AB⊥SF.
又SF∩SE=S,∴AB⊥平面SEF.
又∵AB?平面ABCD,
∴平面SEF⊥平面ABCD.
(2)∵AB∥CD,CD?面SCD,
∴AB∥平面SCD.
又∵平面SAB∩平面SCD=l,
根据直线与平面平行的性质定理得AB∥l.
解析分析:(1)欲证平面SEF⊥平面ABCD,根据面面垂直的判定定理可知在平面ABCD内一直线与平面SEF垂直,而根据线面垂直的性质定理可知AB⊥平面SEF;(2)根据线面平行的判定定理可知AB∥平面SCD,而平面SAB∩平面SCD=l,再根据直线与平面平行的性质定理得AB∥l.

点评:本小题主要考查平面与平面垂直的判定,以及线面平行的判定定理和性质定理等有关知识,考查空间想象能力、运算能力和推理论证能力,考查转化思想,属于基础题.
以上问题属网友观点,不代表本站立场,仅供参考!