设f(x)是R上的奇函数,g(x)是R上的偶函数,若函数f(x)+g(x)的值域为[1,3),则f(x)-g(x)的值域为________.

发布时间:2020-07-31 16:58:50

设f(x)是R上的奇函数,g(x)是R上的偶函数,若函数f(x)+g(x)的值域为[1,3),则f(x)-g(x)的值域为________.

网友回答

(-3,-1]

解析分析:根据奇偶函数的定义得到f(-x)=-f(x),g(-x)=g(x),由两函数的定义域都为R,根据f(x)+g(x)的值域列出不等式,把x换为-x,代换后即可求出f(x)-g(x)的范围,即为所求的值域.

解答:由f(x)是R上的奇函数,g(x)是R上的偶函数,得到f(-x)=-f(x),g(-x)=g(x),∵1≤f(x)+g(x)<3,且f(x)和g(x)的定义域都为R,把x换为-x得:1≤f(-x)+g(-x)<3,变形得:1≤-f(x)+g(x)<3,即-3<f(x)-g(x)≤-1,则f(x)-g(x)的值域为(-3,-1].故
以上问题属网友观点,不代表本站立场,仅供参考!