设函数f(x)=ln(x+a)+x2,(1)若a=,解关于x不等式;(2)证明:关于x的方程2x2+2ax+1=0有两相异解,且f(m)和f(n)分别是函数f(x)的

发布时间:2020-07-31 19:33:51

设函数f(x)=ln(x+a)+x2,
(1)若a=,解关于x不等式;
(2)证明:关于x的方程2x2+2ax+1=0有两相异解,且f(m)和f(n)分别是函数f(x)的极小值和极大值(m,n为该方程两根,且m>n).

网友回答

(1)解:a=时,求导函数可得=.??(2分)
f(x)的定义域为(-,+∞).??????(3分)
当-<x<-1时,f'(x)>0;当-1<x<时,f'(x)<0;当x>时,f'(x)>0.
从而,f(x)在(-,-1),(,+∞)单调增加,在(-1,)单调减少.(5分)
∵,f()=
∴不等式等价于

∴0≤x<ln22
即所求不等式的解集为{x|0≤x<ln22}.(7分)
(2)证明:依题意,f(x)的定义域为(-a,+∞),---(8分)
令g(x)=2x2+2ax+1,因为g(-a)=1=g(0)>0,g(x)的对称轴为x=-0.5a>-a,
△=4a2-8a>0(a2>2),g(-a)=1>0
∴g(x)在(-a,+∞)有两个零点.即方程2x2+2ax+1=0有两相异解------(11分)
由已知f(x)的定义域为{x|x>-a}且---(11分),
若m,n(m>n)方程2x2+2ax+1=0有两相异解,则f'(x)>0的解集为(-a,n)∪(m,+∞)(∵a>0)(12分)
x(-a,n)n(n,m)m(m,+∞)y’+0-0+y增极大值减极小值增故f(m)为f(x)的极小值,f(n)为f(x)的极大值,(14分)

解析分析:(1)先确定函数的单调性,将不等式转化为具体不等式,即可求得不等式的解集;(2)依题意,f(x)的定义域为(-a,+∞),构造函数g(x)=2x2+2ax+1,利用判别式即可确定方程2x2+2ax+1=0有两相异解,再研究函数的单调性,从而可证f(m)为f(x)的极小值,f(n)为f(x)的极大值.

点评:本题以函数为载体,考查导数知识的运用,考查解不等式,考查函数的极值,解题的关键是利用导数确定函数的单调性.
以上问题属网友观点,不代表本站立场,仅供参考!