解答题已知函数f(x)=x-1-alnx(a∈R).(1)若曲线y=f(x)在x=1处

发布时间:2020-07-09 08:46:26

解答题已知函数f(x)=x-1-alnx(a∈R).
(1)若曲线y=f(x)在x=1处的切线方程为3x-y=3,求实数a的值;
(2)若f(x)的值域为[0,+∞),求a的值;
(3)若a<0,对任意x1,x2∈(0,1],且x1≠x2,恒有,求实数a的取值范围.

网友回答

解:(1)∵f'(x)=1-,∴f'(1)=1-a
∴曲线y=f(x)在x=1处的切线的斜率为1-a
∵曲线y=f(x)在x=1处的切线的方程为3x-y-3=0,
∴1-a=3,解得a=-2.
(2)f'(x)=1-=,其中x>0
(i)当a≤0时,f'(x)>0恒成立,所以函数f(x)在(0,+∞)上是增函数
而f(1)=0,所以当x∈(0,1)时,f(x)<0,与f(x)≥0恒成立相矛盾
∴a≤0不满足题意.
(ii)当a>0时,∵x>a时,f'(x)>0,所以函数f(x)在(a,+∞)上是增函数;
0<x<a时,f'(x)<0,所以函数f(x)在(0,a)上是减函数;
∴f(x)≥f(a)=a-a-alna
∵f(1)=0,所以当a≠1时,f(a)<f(1)=0,此时与f(x)≥0恒成立相矛盾
∴a=1
综上所述,若f(x)的值域为[0,+∞),则a=1;
(3)由(2)可知,
当a<0时,函数f(x)在(0,1]上是增函数,又函数y=在(0,1]上是减函数
不妨设0<x1≤x2≤1
则|f(x1)-f(x2)|=f(x2)-f(x1),
∴|f(x1)-f(x2)|≤4|-|即f(x2)+4×≤f(x1)+4×
设h(x)=f(x)+=x-1-alnx+,
则|f(x1)-f(x2)|≤4|-|等价于函数h(x)在区间(0,1]上是减函数
因为h'(x)=1--=,所以x2-ax-4≤0在(0,1]上恒成立,
即a≥x-在(0,1]上恒成立,即a不小于y=x-在(0,1]内的最大值.
而函数y=x-在(0,1]是增函数,所以y=x-的最大值为-3
所以a≥-3,又a<0,所以a∈[-3,0).解析分析:(1)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,建立等式关系即可求出a的值;(2)先若f(x)的值域为[0,+∞),转化为恒成立问题,再讨论a的符号使f(x)≥0恒成立,求出a的值即可;(3)设h(x)=f(x)+=x-1-alnx+,则|f(x1)-f(x2)|≤4|-|等价于函数h(x)在区间(0,1]上是减函数即使x2-ax-4≤0在(0,1]上恒成立,然后利用分离法将a分离出来,从而求出a的范围.点评:本题主要考查了利用导数研究曲线上某点切线方程,以及恒成立问题的应用,同时考查了计算能力,转化与化归的思想,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!