解答题已知函数f(x)=x2+ax+2b的一个零点在(0,1)内,另一个零点在(1,2

发布时间:2020-07-09 00:49:22

解答题已知函数f(x)=x2+ax+2b的一个零点在(0,1)内,另一个零点在(1,2)内,求:
(1)的值域;
(2)(a-1)2+(b-2)2的值域.

网友回答

解:由题意知,则其约束条件为:∴其可行域是由A(-3,1)、B(-2,0)、C(-1,0)构成的三角形.∴(a,b)活动区域是三角形ABC中,(1)令k=,则表达式表示过(a,b)和(1,2)的直线的斜率,∴斜率kmax==1,kmin==故的值域为:(,1);(2)令p=(a-1)2+(b-2)2则表达式(a-1)2+(b-2)2表示(a,b)和(1,2)距离的平方,∴距离的平方pmax=(-3-1)2+(1-2)2=17,pmin=()2=∴(a-1)2+(b-2)2的值域为:(,17).解析分析:由题意知,化简得约束条件,再利用数形结合的方法求解.(1)表达式表示过(a,b)和(1,2)的直线的斜率;(2)表达式(a-1)2+(b-2)2表示(a,b)和(1,2)距离的平方.点评:本题考查的知识点是一元二次方程根的分布与系数的关系,其中根据方程的根与对应零点之间的关系,得到关于a,b的约束条件是解答本题的关键.如果从单纯的代数角度解决本题,难度很大,若能根据表达式的形式或代表的意义联想到其对应的几何图形,则解决问题就可以取得事半功倍的效果.
以上问题属网友观点,不代表本站立场,仅供参考!