题库大全
查看
题库大全
题库
考试培训
财会类题库
网络知识
作业答案
作业习题
蚂蚁庄园答案
当前位置:
题库大全
作业答案
已知三条直线x-y=0,x+y-1=0,mx+y+3=0不能构成三角形,则所有可能的m组成的集合为________.
已知三条直线x-y=0,x+y-1=0,mx+y+3=0不能构成三角形,则所有可能的m组成的集合为________.
发布时间:2020-07-31 16:24:03
已知三条直线x-y=0,x+y-1=0,mx+y+3=0不能构成三角形,则所有可能的m组成的集合为________.
网友回答
{1,-1,-7}
解析分析:
三条直线若两两相交围成一个三角形,则斜率必不相同;否则,只要有两条直线平行,或三点共线时不能构成三角形.
解答:
∵三条直线不能围成一个三角形,∴(1)则l1∥l3,此时m=-1;l2∥l3,此时m=1(2)三点共线时也不能围成一个三角形x-y=0和x+y-1=0交点是(,)此时mx+y+3=0则m=-7故
以上问题属网友观点,不代表本站立场,仅供参考!
上一条:
一个袋中装有4个形状大小完全相同的球,球的编号分别为1,2,3,4.现从袋中随机取一个球,记该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,记该球的编号为n,
下一条:
若A={x||x-|<1},B={x|≥1},定义A×B={x|x∈A∪B且x?A∩B},则A×B=A.∪B.∪C.D.(0,1]
资讯推荐
椭圆=1的焦距等于2,则m的值为________.
如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则在这几场比赛中甲得分的中位数与乙得分的众数分别是A.3,2B.8,2C.23,23D.28,32
给出30个数:1,2,4,7,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,依此类推.要计算这30个数的和,现已
考查下列四个命题:①已知直线l,二次函数的图象(抛物线)C,则“直线l与抛物线C有且只有一个公共点”是“直线l与抛物线C相切”的必要不充分条件②“a+b=0”是“直线
样本x1,x2,…,x9的平均数为5,方差为7,则2x1-1,2x2-1,…,2x9-1的平均数为________,方差为________.
在给定坐标系中作出函数f(x)=x2-4|x|-2的图象,并根据图象写出函数的单调增区间,单调减区间及不等式f(x)>0的解集.
若双曲线(a>0,b>0)上横坐标为的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是A.(1,2)B.(2,+∞)C.(1,5)D.(5,+∞)
将函数的图象沿坐标轴右移,使图象的对称轴与函数的对称轴重合,则平移的最小单位是________.
已知直线l,m,n,平面α,m?α,n?α,则“l⊥α”是“l⊥m,且l⊥n”的________条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必
如图所示的几何体,是由棱长为2的正方体ABCD-A1B1C1D1截去一个角后所得的几何体.(1)试画出该几何体的三视图;(主视图投影面平行平面DCC1D1,主视方向如
已知A,B是圆C(为圆心)上的两点,||=2,则?=________.
有一个篮球运动员投篮三次,三次投篮命中率均为,则这个篮球运动员投篮至少有一次投中的概率是A.0.216B.0.504C.0.72D.0.936
已知a,b∈R,⊙C1:x2+y2-4x+2y-a2+5=0与⊙C2:x2+y2-(2b-10)x-2by+2b2-10b+16=0交于不同两点A(x1,y1),B(
条件p:a≥-2;条件q:2a2-3a-9≥0,则?p是q的A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分也非必要条件
若角β的终边与60°角的终边相同,在[0°,360°)内,求终边与角的终边相同的角.
若数列{an}满足2an=2an-1+d(n≥2),且a1,a2,a3,a4,a5,a6,a7的方差为4,则d=________.
z是纯虚数的一个充要条件是A.B.C.D.
设m∈R,复数z=2m2-3m-2+(m2-3m+2)i.试求m为何值时,z分别为:(1)实数;???????(2)虚数;??????(3)纯虚数.
某公司有5万元资金用于投资项目,如果成功,一年后可获利22%,一旦失败,一年后将丧失全部资金的50%,下表是过去200例类似项目开发的实施结果,则该公司一年后估计可获
函数的单调递减区间为A.[3,4)B.(2,3]C.[3,+∞)D.[2,3]
已知函数与y=kx的图象有公共点A,且点A的横坐标为2,则k=________.
(1)计算;(2)若a+a-1=3,求的值.
若整数m满足不等式,则称m为x的“亲密整数”,记作{x},即{x}=m,已知函数f(x)x-{x}.给出以下四个命题:①函数y=f(x),x∈R是周期函数且其最小正周
数列{an}、{bn}是等比数列,则数列{an+bn}是A.等比数列B.等差数列C.既是等比数列,又是等差数列D.不能确定
不等式组表示的是一个直角三角形围成的平面区域,则k=________.
已知一个算法的程序框图如图所示,当输出的结果为0时,输入的x值为A.2或-2B.-1或-2C.2或-1D.1或-2
已知函数f(x)=x|x-2m|,常数m∈R.(1)设m=0.求证:函数f(x)递增;(2)设m>0.若函数f(x)在区间[0,1]上的最大值为m2,求正实数m的取值
若函数f(x)=lg(x2+2x-3)的单调递增区间为(a,+∞),则a=________.
已知等差数列{an}中,a7=8,a8=7,则a15=A.15B.1C.-1D.0
甲、乙两个盒子中装有大小相同的小球,甲盒中有2个黑球和2个红球,乙盒中有2个黑球和3个红球,从甲、乙两盒中各取一球交换.(I)求交换后甲盒中黑球多于乙盒中黑球的概率;
返回顶部