已知过圆锥顶点的截面面积是最大值为,其中l为圆锥母线长,底面半径为R,则满足A.B.≥C.>D.<
网友回答
B
解析分析:过圆锥顶点的截面面积是最大值为,其中l为圆锥母线长,就是两条母线夹角为90°时的截面面积,求出底面弦长,然后推出他/她与底面半径的关系,即可得到的范围.
解答:过圆锥顶点的截面面积是最大值为,其中l为圆锥母线长,就是两条母线夹角为90°时的截面面积,此时底面弦长为:l,所以l≤2R,所以≥.故选B
点评:本题是基础题,考查圆锥的截面问题,注意截面面积的最大值时,就是两条母线夹角为90°是本题的解题关键.当轴截面顶角小于90°时,轴截面面积最大.