已知数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,满足关系Sn=2an-2.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{bn}的前n项和为Tn,且

发布时间:2020-07-31 16:44:21

已知数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,满足关系Sn=2an-2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Tn,且,求证:对任意正整数n,总有Tn<2;
(Ⅲ)在正数数列{cn}中,设,求数列{lncn}中的最大项

网友回答

(Ⅰ)解:∵Sn=2an-2(n∈N*),①∴Sn-1=2an-1-2(n≥2,n∈N*)②(1分)
①-②,得an=2an-2an-1.(n≥2,n∈N*)∵an≠0,∴(n≥2,n∈N*)
即数列{an}是等比数列.(3分)∵a1=S1,∴a1=2a1-2,即a1=2.∴an=2n.(n∈N*)(5分)
(Ⅱ)证明:∵对任意正整数n,总有(6分)
∴=<2(9分)
(Ⅲ)解:由(cn)n+1=an+1(n∈N*)知lncn=

∵在区间(0,e)上,f'(x)>0,在区间(e,+∞)上,f'(x)<0.
在区间(e,+∞)上f(x)为单调递减函数.(12分)
∴n≥2且n∈N*时,|lncn|是递减数列.
又(14分)

解析分析:(Ⅰ)由Sn=2an-2(n∈N*),知Sn-1=2an-1-2(n≥2,n∈N*),所以an=2an-2an-1.(n≥2,n∈N*),由此可知an=2n.(n∈N*).(Ⅱ)对任意正整数n,总有由此可知=<2.(Ⅲ)由(cn)n+1=an+1(n∈N*)知lncn=令再由函数的单调性可求出数列{lncn}中的最大项

点评:本题考查数列知识的综合应用,解题时要认真审题,注意挖掘隐含条件.
以上问题属网友观点,不代表本站立场,仅供参考!