填空题用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4

发布时间:2020-07-09 01:14:36

填空题用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有________个.(用数字作答)

网友回答

576解析分析:首先把1和2相邻,3与4相邻,5与6相邻当做三个元素进行排列,这三个元素形成四个空,把7和8 在这四个位置排列,三对相邻的元素内部各还有一个排列,根据分步计数原理得到这种数字的总数.解答:首先把1和2相邻,3与4相邻,5与6相邻当做三个元素进行排列有A33种结果,这三个元素形成四个空,把7和8 在这四个位置排列有A42种结果,三对相邻的元素内部各还有一个排列A22,根据分步计数原理得到这种数字的总数有A33A42A22A22A22=576,故
以上问题属网友观点,不代表本站立场,仅供参考!