定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R,有f(a+b)=f(a)?f(b),(Ⅰ)?求证:对任意的x∈R,恒有f(

发布时间:2020-08-01 02:27:35

定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R,有f(a+b)=f(a)?f(b),
(Ⅰ)?求证:对任意的x∈R,恒有f(x)>0;
(Ⅱ)若f(x)?f(2x-x2)>1,求x的取值范围.

网友回答

解:(Ⅰ)令a=x,b=-x则?f(0)=f(x)f(-x)∴f(-x)=
由已知x>0时,f(x)>1>0,
当x<0时,-x>0,f(-x)>0
∴f(-x)=>0
又x=0时,f(0)=1>0
∴对任意x∈R,f(x)>0
(Ⅱ)f(x)?f(2x-x2)=f[x+(2x-x2)]=f(-x2+3x)
又1=f(0),f(x)在R上递增
∴由f(3x-x2)>f(0)得:3x-x2>0∴0<x<3
解析分析:(Ⅰ)因为当x>0时,f(x)>1,所以欲证对任意的x∈R,恒有f(x)>0,所以只需证明x小于等于0时,恒有f(x)>0即可.因为对任意的a,b∈R,有f(a+b)=f(a)?f(b),可以令a=b=0,就能求出f(0)的值,令ax,b=-x,就能判断f(-x)的符号.(Ⅱ)根据已知,函数对任意的a,b∈R,有f(a+b)=f(a)?f(b),可把要解的不等式f(x)?f(2x-x2)>1化为f(-x2+3x)>1,再借助函数的单调性解不等式即可.

点评:本题主要考查了赋值法在求函数值,证明函数的性质中的应用,以及利用函数单调性解不等式.
以上问题属网友观点,不代表本站立场,仅供参考!