已知函数f(x)=3-2|x|,g(x)=x2-2x.构造函数y=F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f

发布时间:2020-07-31 09:30:09

已知函数f(x)=3-2|x|,g(x)=x2-2x.构造函数y=F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x).那么y=F(x)A.有最大值3,最小值-1B.有最大值3,无最小值C.有最大值,无最小值D.有最大值,最小值

网友回答

C
解析分析:在同一坐标系中先画出f(x)与g(x)的图象,然后根据定义画出F(x),就容易看出F(x)有最大值,无最小值,解出两个函数的交点,即可求得最大值.

解答:在同一坐标系中先画出f(x)与g(x)的图象,然后根据定义画出F(x),就容易看出F(x)有最大值,无最小值当x<0时,由3-2|x|=x2-2x得x=2+(舍)或x=2-此时F(x)的最大值为:.故选C.

点评:本题考查新定义,考查阅读能力和函数图象的画法,必须弄懂F(x)是什么.先画出|f(x)|及g(x)与-g(x)的图象.再比较f(x)与g(x)的大小,然后确定F(x)的图象.这是一道创新性较强的试题,属中档题.
以上问题属网友观点,不代表本站立场,仅供参考!