函数.
(1)判断并证明函数的奇偶性;
(2)若a=2,证明函数在(2,+∞)单调增;
(3)对任意的x∈(1,2),f(x)>3恒成立,求a的范围.
网友回答
(1)解:f(x)是奇函数,证明如下:
由题意可得,函数的定义域{x|x≠0}关于原点对称
∵f(-x)=-x-=-f(x)
∴f(x)是奇函数;
(2)证明;当a=2时,f(x)=x+,∴
当x>2时,>0恒成立
∴函数在(2,+∞)单调增;
(3)解:当a≤0时,在x∈(1,2)单调递增
∴1+a
∴1+a≥3
∴a≥2(舍)
当a>0时,在(0,]单调递减,在[,+∞)单调递增
∴2>3
∴
∴a的范围是.
解析分析:(1)函数是奇函数.利用奇函数的定义,先确定函数的定义域关于原点对称,再验证f(-x)=-f(x)即可;(2)求导数,证明导数大于0即可;(3)对a讨论,确定函数在(1,2)上的单调性,利用f(x)min>3,即可求得a的范围.
点评:本题考查函数的单调性与奇偶性,考查恒成立问题,确定函数的单调性是关键.