已知函数对于定义域内任意一个x都有f(-x)=-f(x),且f(1)=2.
(1)求a,b的值;
(2)用定义证明f(x)在(-∞,-1)上是增函数.
网友回答
解:(1)因为f(-x)=-f(x)
即(2分)
所以-ax+b=-ax-b
∴b=0,(4分)
又f(1)=2,所以,
∴a=1(6分)
(2)由(1)得
设x1,x2是(-∞,-1)上的任意两实数,且x1<x2,
则=,(9分)
因为x1<x2<-1,所以x1-x2<0,x1x2>1,x1x2-1>0,
所以f(x1)-f(x2)<0,f(x1)<f(x2)(11分)
所以f(x)在(-∞,-1)上是增函数(12分)
解析分析:(1)由已知中函数对于定义域内任意一个x都有f(-x)=-f(x),且f(1)=2,可构造一个关于a,b的方程组,解方程组,即可得到a,b的值;(2)任意区间(-∞,-1)上的两实数,且x1<x2,构造出f(x1)-f(x2),并判断其符号,进而根据函数单调性的定义,即可得到f(x)在(-∞,-1)上是增函数.
点评:本题考查的知识点是函数单调性的判断与证明,函数解析式的求法,其中(1)的关键是根据已知条件,构造一个关于a,b的方程组,(2)的关键是熟练掌握定义法(作差法)证明函数单调性的方法和步骤.