解答题某校举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛:答对3题者直接进入决赛,答错3题者则被淘汰.已知选手甲答对每个问题的概率相同,并且相互之间没有影响,答题连续两次答错的概率为.
(1)求选手甲可进入决赛的概率;
(2)设选手甲在初赛中答题的个数为ξ,试求ξ的分布列,并求ξ的数学期望.
网友回答
解:(1)设选手甲任答一题,正确的概率为p,
依题意,,
甲选答3道题目后进入决赛的概率为,
甲选答4道、5道题目后进入决赛的概率分别为,,
∴选手甲可进入决赛的概率.
(2)由题意知ξ可取3,4,5,
依题意,
,
∴ξ的分布列为:
ξ345P∴.解析分析:(1)设选手甲任答一题,正确的概率为p,根据甲答对每个问题的概率相同,并且相互之间没有影响,答题连续两次答错的概率为,列出关于P的方程,得到甲答对题目的概率,选手甲能够进入决赛包括两种情况,这两种情况是互斥的,由互斥事件的概率公式计算得到