解答题已知函数.
(1)写出该函数的单调区间;
(2)若函数g(x)=f(x)-m恰有3个不同零点,求实数m的取值范围;
(3)若f(x)≤n2-2bn+1对所有x∈[-1,1],b∈[-1,1]恒成立,求实数n的取值范围.
网友回答
解:(1)函数f(x)的图象如右图;
函数f(x)的单调递减区间是(0,1)单调增区间是(-∞,0)及(1,+∞)…(3分)
(2)作出直线y=m,
函数g(x)=f(x)-m恰有3个不同零点等价于函数y=m
与函数f(x)的图象恰有三个不同公共点.
由函数又f(0)=1?f(1)=
∴…(6分)
(3)∵f?(x)≤n2-2bn+1对所有x∈[-1,1]恒成立
∴[f(x)]max≤n2-2bn+1,[f(x)]max=f(1)=1
∴n2-2bn+1≥1即n2-2bn≥0在b∈[-1,1]恒成立
∴y=-2nb+n2在b∈[-1,1]恒大于等于0????????????????…(9分)
∴,∴
∴n的取值范围是(-∞,-2]∪{0}∪[2,+∞)…(12分)解析分析:(1)x≤0的图象部分可由图象变换作出;x>0的部分为抛物线的一部分.(2)数形结合法:转化为直线y=m与函数f(x)的图象有三个交点.(3)将f?(x)≤n2-2bn+1对所有x∈[-1,1]恒成立,转化为[f(x)]max≤n2-2bn+1即n2-2bn≥0在b∈[-1,1]恒成立,从而建立关于n的不等关系,求出n的取值范围.点评:本题考查了函数图象的作法、函数的单调性及函数零点问题,本题的解决过程充分体现了数形结合思想的作用.