已知函数f(x)=x3-x2+cx+d在x=2处取得极值.
(1)求c的值;
(2)当x<0时,f(x)<d2+2d恒成立,求d的取值范围.
网友回答
解:(1)∵f(x)在x=2处取得极值,
∴f′(2)=4-2+c=0,
∴c=-2.
∴f(x)=x3-x2-2x+d,
(2)∵f′(x)=x2-x-2=(x-2)(x+1),
∴当x∈(-∞,-1]时,f′(x)>0,函数单调递增,当x∈(-1,2]时,f′(x)<0,函数单调递减.
∴x<0时,f(x)在x=-1处取得最大值 ,
∵x<0时,f(x)<恒成立,
∴<,即(d+7)(d-1)>0,
∴d<-7或d>1,
即d的取值范围是(-∞,-7)∪(1,+∞).
解析分析:(1)若f(x)在x=2处取得极值,则f′(2)=0,可求出满足条件的c值;(2)利用导数可求函数f(x)=x3-x2+cx+d的单调性,进而分析出当x<0时,函数的最大值,又由当x<0时,f(x)<d2+2d恒成立,可以构造出一个关于d的不等式,解不等式即可得到d的取值范围.
点评:本题以函数为载体,考查函数在某点取得极值的条件,导数在最大值,最小值问题中的应用,其中根据已知中函数的解析式,求出函数的导函数的解析式,是解答本题的关键.