填空题在平面直角坐标系xoy中,设抛物线y2=4x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的倾斜角为120°,那么|PF|=________.
网友回答
4解析分析:利用抛物线的定义,|PF|=|PA|,设F在l上的射影为F′,依题意,可求得|FF′|,|AF′|,从而可求得点P的纵坐标,代入抛物线方程可求得点P的横坐标,从而可求得|PA|.解答:解:∵抛物线y2=4x的焦点为F,准线为l,P为抛物线上一点,∴|PF|=|PA|,F(1,0),准线l的方程为:x=-1;设F在l上的射影为F′,又PA⊥l,依题意,∠AFF′=60°,|FF′|=2,∴|AF′|=2,PA∥x轴,∴点P的纵坐标为2,设点P的横坐标为x0,则=4x0,∴x0=3,∴|PF|=|PA|=x0-(-1)=3-(-1)=4.故