已知椭圆(0<b<2)与y轴交于A、B两点,点F为该椭圆的一个焦点,则△ABF面积的最大值为A.1B.2C.4D.8

发布时间:2020-07-31 14:45:54

已知椭圆(0<b<2)与y轴交于A、B两点,点F为该椭圆的一个焦点,则△ABF面积的最大值为A.1B.2C.4D.8

网友回答

B
解析分析:欲求△ABF面积的最大值,先利用椭圆的参数b,c表示出△ABF面积,利用椭圆的参数b,c间的关系消去一个参数,再结合基本不等式求其最大值即可.

解答:∵已知椭圆(0<b<2)∴a=2,c=则△ABF面积S=AB×OF=2b×c=b当且仅当b=取等号.则△ABF面积的最大值为2故选B.

点评:本题主要考查椭圆的基本性质的应用和三角形面积的最大值问题.直线与圆锥曲线的综合题是高考的重点也是热点问题,每年必考,一定要好好准备.解答的关键是基本不等式的应用.
以上问题属网友观点,不代表本站立场,仅供参考!