解答题如图,已知三角形△ABC与△BCD所在平面互相垂直,且∠BAC=∠BCD=90°

发布时间:2020-07-09 07:13:11

解答题如图,已知三角形△ABC与△BCD所在平面互相垂直,且∠BAC=∠BCD=90°,AB=AC,CB=CD,点P,Q分别在线段BD,CD上,沿直线PQ将△PQD向上翻折,使D与A重合.
(Ⅰ)求证:AB⊥CQ;
(Ⅱ)求直线AP与平面ACQ所成的角.

网友回答

(I)证明:∵面ABC⊥面BCQ
又CQ⊥BC
∴CQ⊥面ABC
∴CQ⊥AB(5分)
(Ⅱ)解:取BC的中点O,BD的中点E,如图以OB所在直线为x轴,以OE所在直线为y轴,以OA所在直线为z轴,建立空间直角坐标系.(6分)
不妨设BC=2,则A(0,0,1),D(-1,2,0),P(x,1-x,0),(8分)
由|AP|=|DP|即x2+(1-x)2+1=(x+1)2+(x+1)2,
解得x=0,所以P(0,1,0),(10分)
故=(0,1,-1)
设=(x,y,z)为平面ACQ的一个法向量,
因为=(-1,0,-1),==λ(0,1,0)
由即
所以=(1,0,-1)(12分)
设直线AP与平面ACQ所成的角为α
则Sinα=|cos<AP,n>|=
所以α=
即直线AP与平面ACQ所成的角为V(14分)解析分析:(I)由已知中面ABC⊥面BCQ,及=∠BCD=90°,我们根据面面垂直的性质定理,我们易得CQ⊥面ABC,进而根据线面垂直的定义,即可得到AB⊥CQ;(Ⅱ)以BC的中点O,BD的中点E,如图以OB所在直线为x轴,以OE所在直线为y轴,以OA所在直线为z轴,建立空间直角坐标系,求出各顶点的坐标,进而求出直线AP的方向向量及平面ACQ的法向量,根据向量法求线面夹角的步骤,即可得到
以上问题属网友观点,不代表本站立场,仅供参考!