如图,在几何体SABCD中,AD⊥平面SCD,BC⊥平面SCD,AD=DC=2,BC=1,又SD=2,,∠SDC=120°.
(1)求SC与平面SAB所成角的正弦值;
(2)求平面SAD与平面SAB所成的锐二面角的余弦值.
网友回答
解:如图,过点D作DC的垂线交SC于E,以D为原点,
分别以DC,DE,DA为x,y,z轴建立空间上角坐标系.
∵∠SDC=120°,
∴∠SDE=30°,
又SD=2,则点S到y轴的距离为1,到x轴的距离为.
则有D(0,0,0),,A(0,0,2),C(2,0,0),B(2,0,1).(4分)
(1)设平面SAB的法向量为,
∵.
则有,取,
得,又,
设SC与平面SAB所成角为θ,
则,
故SC与平面SAB所成角的正弦值为.(9分)
(2)设平面SAD的法向量为,
∵,
则有,取,得.
∴,
故平面SAD与平面SAB所成的锐二面角的余弦值是.(14分)
解析分析:如图,过点D作DC的垂线交SC于E,以D为原点,分别以DC,DE,DA为x,y,z轴建立空间上角坐标系,(1)设平面SAB的法向量为,利用,得,设SC与平面SAB所成角为θ,通过,求出SC与平面SAB所成角的正弦值为.(2)设平面SAD的法向量为,利用,得.利用,求出平面SAD与平面SAB所成的锐二面角的余弦值是.
点评:本题是中档题,考查直线与平面所成角正弦值、余弦值的求法,考查空间想象能力,计算能力,熟练掌握基本定理、基本方法是解决本题的关键.