如图在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将△AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为
A.B.C.D.
网友回答
B
解析分析:根据△AED沿AE折起,使点D在面ABC上的射影K在直线AE上,可知D′K⊥AE,所以K的轨迹是以AD′为直径的一段圆弧D′K,求出圆心角∠D′OK,即可求得K所形成轨迹的长度
解答:解:由题意,D′K⊥AE,所以K的轨迹是以AD′为直径的一段圆弧D′K,设AD′的中点为O,∵长方形ABCD′中,AB=,BC=1,∴∠D′AC=60°∴∠D′OK=120°=∴K所形成轨迹的长度为故选B.
点评:本题以平面图形的翻折为载体,考查立体几何中的轨迹问题,考查弧长公式的运用,解题的关键是利用D′K⊥AE,从而可知K的轨迹是以AD′为直径的一段圆弧D′K.