设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)-log2x]=6,若x0是方程f(x)-f′(x)=4的一个解,且x0∈(a,a

发布时间:2020-07-31 16:58:55

设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)-log2x]=6,若x0是方程f(x)-f′(x)=4的一个解,且x0∈(a,a+1)(a∈N*),则a=________.

网友回答

1

解析分析:由题意可得f(x)-log2x为定值,设为t,代入可得t=4,进而可得函数的解析式,化方程有解为函数F(x)=f(x)-f′(x)-4=log2x-有零点,易得F(1)<0,F(2)>0,由零点的判定可得
以上问题属网友观点,不代表本站立场,仅供参考!