如图:在三棱锥S-ABC中,已知点D、E、F分别为棱AC、SA、SC的中点.(Ⅰ)求证:EF∥平面ABC;(Ⅱ)若SA=SC,BA=BC,求证:平面SBD⊥平面ABC

发布时间:2020-08-01 01:48:37

如图:在三棱锥S-ABC中,已知点D、E、F分别为棱AC、SA、SC的中点.
(Ⅰ)求证:EF∥平面ABC;
(Ⅱ)若SA=SC,BA=BC,求证:平面SBD⊥平面ABC.

网友回答

证明:(Ⅰ)∵EF是△SAC的中位线,
∴EF∥AC.又∵EF?平面ABC,AC?平面ABC,
∴EF∥平面ABC.(6分)
(Ⅱ)∵SA=SC,AD=DC,∴SD⊥AC.
∵BA=BC,AD=DC,∴BD⊥AC.
又∵SD?平面SBD,BD?平面SBD,SD∩DB=D,
∴AC⊥平面SBD,又∵AC?平面ABC,
∴平面SBD⊥平面ABC.(12分)

解析分析:(Ⅰ)欲证EF∥平面ABC,根据直线与平面平行的判定定理可知只需证EF与平面ABC内一直线平行,而EF是△SAC的中位线,则EF∥AC.又EF?平面ABC,AC?平面ABC,满足定理所需条件;(Ⅱ)欲证平面SBD⊥平面ABC,根据面面垂直的判定定理可知在平面ABC内一直线与平面SBD垂直,而SD⊥AC,BD⊥AC,又SD∩DB=D,满足线面垂直的判定定理,则AC⊥平面SBD,又AC?平面ABC,从而得到结论.

点评:本题主要考查了直线与平面平行的判定,以及面面的垂直的判定,同时考查空间想象能力、推理论证能力,考查数形结合思想、化归与转化思想,属于基础题.
以上问题属网友观点,不代表本站立场,仅供参考!